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ABSTRACT t

The optimal linear combination of control variates is well known when :

the controls are assumed to be unbiased. We derive here the optimal linear ‘__
combination of controls in the situation where bias is present. This .
analysis is particularly relevant to the small-sample theory for control fj:
variates as applied to the steady-state estimation problem. Results for
the method of multiple estimates are also given. X
Keywords: control variables ';
simulation output analysis, -

small-sample theory

steady-state estimation problen
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1. INTRODICTION.

The method of control variates has been extensively studied as a tech—
nique for obtaining variance reductions for complex simulations. The
nmethod basically requires that the practitioner be able to identify pro-
cesses for which the asymptotic mean is known; the knowledge of those
asymptotic means is then used to obtain a variance reduction.

Our goal here is to study a specific aspect of the small-sample theory
for control variates. Our particular interest focuses on the loss of effi-
ciency incurred when only the asymptotic mean is known, as opposed to the
true (small-sample) mean. The results obtained here have implications for
the application of control variates to the steady-state estimation prob-
lem. Specifically, in many steady-state simulations, only the asymptotic
means of the control variates are known; see, for example, Section 8 of
GLYNN and WHITT (1985), in which the arrival process to a queue is used as
a control,

The results obtained here complement other small-sample studies on
control variates in which the focus is on the degradation in performance
caused by estimation of the optimal control coefficients; see, for example
LAVENBERG, MOELLER, and WELCH (1982), RUBINSTEIN and MARCUS (1985), and
VENKATRAMAN and WILSON (1985),

Our methods can also be used to study small-sample properties of the
method of multiple estimates; see Section 5. Concluding remarks are stated

in Section 6.
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2. BACKGROUND ON CONTROL VARIATES.

Suppose that one wishes to estimate a parameter r from a simylation.

Assume that it is possible to generate variables (Xl’Yl)’ (X2,Y2),...

(Xi 3 Rl, Y1 £ RQ, d > 1) such that

|
m
| v
~7
"
%
L)

(2.1)

Y
n

1y y =2y
n
(=» denotes weak convergence) as n+®, where u 1s known. Clearly, the

estimator in is consistent for r under (2.1).

The fundamental observation underlying the method of control variates

is that (2.1) and (2.2) together imply that for X € Eﬁ,

— — t——
Un(\) X, - A (Yn - u) =

as n*®, so Gn(X) is also consistent for r. (We adopt here the conven-
tion that all elements of Rd are represented as column vectors; at
denotes the transpose of a ¢ Rd.) Since u 1is known, ﬁn(K) is an
estimator which can legitimately be constructed from the simulated data.
Furthermore, A 1is at our disposal, so that A\ may be chosen so as to
maximize the efficiency of the estimator Un(\).

To maximize the asymptotic efficiency of Un(\), it i{s common to assume

a strengthened form of (2.1) and (2.2)

(2.3) n“(X_ - r, Yn - u) = N(0,C)
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i:
[
: as m=, where N(0,C) is a multivariate normal distribution with mean
vector zero and (d+1) x (d+1) covariance matrix
; 9
% Cxy
: C = y
c c
Xy yy
E (cxy and cyy are dxl and dxd matrices, respectively.) Given (2.3), )
i the continuous mappling lemma (BILLINGSLEY (1968), p. 31) shows that ]
. K
f :
& 2,= 2
(2.4) n (Un(k) - r) = g“(\) N(O,1)

as m, where

e
o .
OOROTD . R

20y =of =% - B oerte A .
X Xy yy

Xy
To optimize the asymptotic efficiency of ﬁn(K), (2.4) suggests that
one should choose A so as to minimize cz(k). Assuming that ¢ is

yy

positive definite (and hence non-singular), the value A* which minimizes

cz(k) is given by

(2.5) A* = c-lc "]

yy Xy a

(see p. 31) of ANDERSON (1958); the corresponding value of GZ(X) is then

2 2 t -1
* = g -
(2.6) g ()\ ) (o c ’C“o
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3. THE OPTIMAL SOLUTION IN THE PRESENCE OF BIAS. X
)
IS
The development of the formulas (2.5) and 2.6) discussed in Section 2 <
. - “
' relied heavily on the asymptotic limit theory for the estimator Un(K). A R
S w4
; somewhat different approach, which permits study of small-sample behavior, :
can also be taken. As we shall see, the two viewpoints coincide, under b
appropriate regularity conditions, in the limit.
A reasonable criterion for choosing the control coefficient vector A
- is to choose A so that the mean squre error (MSE) of Un(K) is minimized.
: For this criterion to make sense, assume that: .
2 Q
(3.1) E(X°+ YY) <e for n> l. N
n D n - -
Let .
b (n) = E(X_ -1),
- X n
N b(n) = EY -4, -
y n -
cz(n) = var (X)
X n ’
c_(n) =EXY) - EX)IEY) , .-
Xy nn n n >
c (M =EYY) - EYO'ERY) , !
yy nn n n
{
K
and .1
MSE (A\) = E(U_(\) ~ l‘)2 .::
n n ‘ ~ )

i~

CI I SR L. R . ... .. ECI

Lt e - @ s e T e e T e - . . . v - . .. .
RO RSP . L LT e T T T e S P S S vt PUPA N
en't e wle L LSl S LI B B IR U BN S P TIF JA S - J JRr SS N 1-1'-,1.JA~'._\;:‘:A!A‘:Aﬁn'-‘.._ [




A R N RSt M S A At et A M s W S A 2 e e et ey s - e e e e o e e e

:

i

F

r

I'd

i

” Then,

A (3.2) MSE (M) = var(U (1)) + (E(U (N) - r))?2
v n n n

y

E = oi(n) - Xtcxy(n) - cxy(n)cx
+ Xtcxy(n))\ + bi(n)

: +b (WA (n) + b (M)b (m)A
i x(n y n % n y(n

t t t

. + A by(n)by(n) A

This quadratic form in A has precisely the same structure as does oz(k),

*
so that the minimizer xn of MSEn(X) is given by
* -1
(3.3) kn = A(n) “d(n)
where

o
A(n) = ¢ n) + b (a)b (n
(n) yy( ) y( ) y( )
d(n) = ¢ (n) + b (n)b (n).
Xy X y
{(0f course, we again require that ny(n) be positive definite. Note that

this implies A(n) is positive definite.) The corresponding minimal value

' of MSEn(X) is then
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(3.4)  MSE_(AD) = o(n) + bi(n)
n n x X
t -1
- d(n) A(n) “d(n).
We summarize our discussion thus far with the following proposition.

(3.4) PROPOSITION. Assume (3.1). Then, if cyy(n) is positive definite,

%*
the minimizer kn of MSEn(k) is given by (3.3) and the minimizing value

2T T T ¥ N .. .Y V.Y . YV ¥V VT EWEETST . s

of MSEn(x) is given by (3.4).

As promised earlier, we will now show that the MSE criterion used in
this section coincides with the asymptotic efficiency criterion used in

Section 2. We will require the additional regularity condition:

VY. WY .y T T TV TEEmEv

f

(3.6) {n(i; - r)2 + n(?% - u)t(§; - u :n> 1} 1is uniformly integrable.

This assumption allows us to pass expectations through the limit theorem

(2.3), thereby yvielding

1
(3.7) nsz(n) + 0 ,

1
2
n by(n) + 0 .

g 2 . 2

F n ox(n) S .

} nc (n) *»c¢ .
xy Xy

|

nec (n) *c ,
y

y yy

as n*», We may therefore conclude that
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n A(n) > ¢ , and
yy

n d(n) + ¢
Xy

is positive definite, then

So that if ¢
Yy

* -1
)\n = (n A(n)) "(n d(n))

*

-l =\ .

+c ¢
Yy Xy

Similarly,

* 2 %
n MSEn(kn) + g (h),

thereby yielding the following result.
(3.8) PROPOSITION. Assume (2.3) and (3.6) ((3.6) implies (3.1)). If va
* * ’
is positive definite, them A -+ A* and n MSEn(Kn) > cZ(X*), as n=o,
This proposition is a formal statement of the fact that the MSE and
criterion coincide as n-»=,
-
Y

asymptotic efficiency

4. SMALL-SAMPLE THEORY FOR STEADY-STATE CONTROL VARIATE SCHEMES
is a steady-state parameter of a stochastic svystem,

T

Suppose that
represent observations gathered during the

-

\.h Y .( Y LI
and e (X » ]),( 2, 2)
Oul‘ p[lmary goa] here is to ObtaL“ ar

time evolution of the system.
*
asymptotic expansion for Kn and MSEn(xn).
both (2.3) and (3.6) are valid for our

to assume that

We will need
One condition which guarantees this is to require

steady-state simulation.
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that {(Xn,Yn) :n> 1} be a non-delayed regenerative sequence with regen-

eration times TO =0, TI,TZ,.... If one imposes the moment condition

T -
1 1

E{(] vy + D)<
k 'k
k=0
then (2.3) and (3.6) follow (see pp. 99-104 of CHUNG (1967) for a proof in
the Markov chain setting; the general case can be argued in precisely the
same way).
We will further require that the bias terms take the form

1 1

(4.1) b (n) = —b + o)

1 1
by(n) = by + o(;)

for some constants bx and by’ where o(dn) represents a sequence {an}
such that an/dn + 0 as n»», The assumption (4.1) is satisfied in a
variety of steady-state contexts.

Suppose, for example, that

(4.2) Tl X -t | < e
n
n=]
Then, if we set
b = ' (EX - 1),
X n

it follows that
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1n
b (n) == 7 (EX, - r)
X n =1 i
1 [--]
==b - % I (ex; - 1)
i=n+1}

A similar analysis for by(n) shows that

(4.3) ZlEY—pl<w
n
n=1

is a sufficient condition for the second bias expansion. The absolute con-
vercance of the sums in (4.2) and (4.3) occurs autcmatically if the expec-

tations converge geometrically fast:
n

(4.4) EX =+ o{p )
n

EY =u + o(o)

for some p satisfying |p|<1. The geometric convergence dictated by
(4.4) is frequently satisfied in a Markov process context, for example. In
particular, many aperiodic Markov chains satisfy (4.4); see Lemma 7.2,

p. 224, of DOOB (1953) and pp. 75~101 of KEMENY and SNELL (1960).
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Assuming now that (2.3), (3.6), and (4.1) are in force, observe that

* -1
AT A(n) = d(n)

-1
= (n A(n)) (n d(n))
From (3.7) (this is implied by (3.6)) and (4.1), it is evident that

n A(n) = ¢ +-l'bbt+0('l)
Yy n vy o

n d(n) = ¢ + 1 bb + ofl)
Xy n Xy n

Hence, assuming ny is a positive definite,

(n A(n))ml = (¢ o 1+ L c bbb +o0
y n y

Yy yy'y n
= (1 Ly bt o(l)T—lc -1
n yyy o Yy
Now for n large enough, the matrix
1 -1 t 1
F(n) =— ¢ b b + ol—]l.
) o yyvyy (“)
has been spectral radius less than one, so that Q]
-1 2 3 "9
(I + F(n)) =1 - F(n) 4+ F(n)” - F(n)™ + ... :
1 - Ty e ord,
noyyyy n
Consequently
10
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Similarly, we find that

*
n MSE(Kn)

Ly opte e
n Xy yy xy
l c tc-lb b
n Xy ywzxy

t -1 t -1

c b c_ ¢
XYy ¥y ¥y y yy xy

o(=).

L
n

1
=c
n

We therefore obtain the following result,

(4.5) THEOREM. Assume (2.3), (3.6), and (4.1). 1If cyy is positive defi~

nite, then

* * - -
A_=X - 1 1b bt !
n n

c c._¢
YY Y ¥y Yy Xy

+ c-lb b + o(i)
vy Xy D

Py
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and !

* 2, % 2 t -1

n MSE (A ) =0 (A ) -=Dbbec ¢
n ' n n X'y yy xy \
.
+ l-c £ 1b btc 1c .
n Xy yyyyyyXxy ;
1 .2 1 s
+;bx+ O(‘;). ,,

It is of some interest to examine the degradation in MSE of the
control variate scheme when the asymptotic control vector M\ is used,
rather than the small-sample optimal vector X:.

let Mn(k) =n MSEn(A). It is easily verified, from (3.2), that for

arbitrary A and ko,

t ;
(4.6) Mn()\) = Mn()\o) -V Mn()\o) o (M- ko) .

t
+ (\ - )\o) Hn()\ - Ko)

where
t
v Mn(Xo) = 2n(cyy(n) + by(n)by(n) ) Ko :
= 2nc__(n) + 2n b (n)b (n) -
Xy X y .
and ii
H =nc (n) +nb(n) b (n). ;1
n vy y y ]
R
(This is just a Taylor expansion of Mn(K) around A = ko.) Setting A\ = -

* *
A* and Xo = Kn’ we observe that ¥ Mn(Kn) = 0 so that (4.6) becomes

. * * * * * *
(4.7) Mn(k ) = Mn(Kn) + (v - kn) Hn(\ - Kn).
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Letting

d = c_lb btc-lc - c-lb b,
YY Y Y ¥y XYy Yy x'y

*
Theorem 4.5 shows that An = \* - d/n + o(1/n), whereas (3.7) yields

cyy as n*®, It follows from (4.7) that

* *
M) = Mmooy + 4 ate d+o(l).
n n n n2 yy n

2

As a consequence, we obtain the following result.

(4.8) PROPOSITION. Assume (2.3), (3.6), (4.1), and that cyy is positive

definite. Then, the degradation in MSEn(K) caused by using A* rather

* -
than xn is given by n 3

a%c_d + o(l/n3). (Since ¢ is positive
yy yy

definite, dtcyyd is always nonnegative.)

Thus, the degradation in MSE is of small order, since it decreases as
the reciprocal of the cube of the sample size. However, in certain small-
sample situations, the degradation could be significant. In such a situa-
tion, Theorem 4.5 provides a possible key to ilmproving the performance of
the control scheme.

let ﬁn = A\* - d/n. Noting that Qn = k: + o(1/n), it follows from
(4.7) that Mm(ﬁn) = Hn(K:) + o(l/nz). Thus, using ﬁn as the control
vector is "almost” as good as using the optimal vector x:.

Clearly, in order to obtain optimal asymptotic efficiency from the
control variate scheme, A* = c-lc must be estimated. Ordinarily,

Yy Xy
this will require consistent estimation of both cyy and cxy; see IGLEHART
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and LEWIS (1979) for details in the regenerative case. Thus, if the simu-
lation can estimate the quantities bx and by’ Qn can be obtained and

used to improve performance. Note that even if the estimators are not par-
ticularly accurate, their influence “"washes out" fairly rapidly, since ﬁn
+ A* as n*», Thus, one should never lose too much efficiency, even with

poor estimators.

5. SMALL-SAMPLE THEORY FOR STEADY-STATE MULTIPLE ESTIMATE SCHEMES
Our goal here is to establish small-sample results, analogous to those
obtained in Section 4, for the method of multiple estimates. Given a

d
steady-state parameter r € R, suppose that one can generate an R -

valued sequence Zl,Zz,... such that
1
(5.1) o’ (Z_-re) = NO,0)

- d
as n*®, where Zn = (Zl+°"+Zn)/n, e ¢ R° 1is a vector consisting entirely
of 1's, and C 1is a d x d covariance matrix. The idea behind the method
of multiple estimates is that for any vector a such that ate = 1, (5:.1)

implies that

one now chooses a so as to maximize efficiency. HEIDELBERGER (1980) ex-
plored this technique in the context of Markov chains, and showed how one

can generate Zi's with property (5.1).
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It is worth pointing out that the method of multiple estimates can be

viewed as a special case of control variates. Let

t
Xn = e Zn/d

Then,

where Yn = Zn and A\ = e/d - a. The constraint ate = ] translates into
choosing A so that xte = 0. With the (Xn,Yn)'s defined in this way,
we are again in the setting of Section 2 through 4., Although it would be
possible to derive all the asymptotic theory for multiple estimates by ap-
pealing to the previously developed results for control variates, it seems
easier to obtain them directly.

Note that the continuous mapping lemma, as applied to (5.1), yields

o) —

a? (a"Z_ - 1) = o¥(a) NO,1)

where cz(a) = atCa. The minimizer of oz(a) subject to ate =] 1is given

by

* -1 t -1
a =C e/ eC e,

provided that C 1is positive definite (see p. 60 of RAO (1973)). The mini-
2 ) . 2 t -1 -1 )
mal value of o (a) is then given by o (a*) = (e C e) . The following

theorem summarizes the situation.

15
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(5.2) THEOREM. Assume that (5.1) holds with C positive definite. Then:

t -1 - . . e s
- (1) oz(a) has minimal value (e C e) l, and is minimized at o* = _
A -1 -1 ;
N C e/(efC le). X
& _ A
If, in addition, {n(Zn - re) (Zn - re) : o> 1} 1is uniformly integrable
o and if Ezn = re + b/n + o(1l/n) for some b ¢ Rd, then:
Fd
.. _ t — 2 ..
3 (ii) MSEn(a) z E(a Zn - r) has minimal value
o (et(C(n) + b(n)b(n)t).le)_l and is minimized at
. t. -1
. - (C(n) + b (Mb(n)") e ,
n et(C(n) + b (n)b(n)t)—le
where C(n) = E(Z 2°) - (EZ_) (EZ )* and b(n) = EZ - re, -
n"n n n n
* e 1 efc toptc e
(i) 7= Wl LI wad
5 (e C “e) (e C "e) 3
} 1t -1 :
_ig :b_(lz ® 4 ofd) an ;
(e"C "e)
* “hpte .
MSE(a ) = —— (1 + 28 DB C ey ply X
n t -1 t -1 n .
e Ce nedcC e K
. % 3.t -3 .
. (iv) MSE(a*) = MSh(an) +n dCd+ o(n "), where .
- efclbbcley -1 ¢ lentcle :
i d = (=) e - -
(e C e) e’C e
N
. 16 N
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Thus, the results obtained for the method of multiple estimates are

qualitatively similar to those obtained for control variates.

6. CONCLUSIONS.

Using the MSE criterion, we have shown that under rather general

*
conditions, the small-sample optimal control coefficients Xn, for steady-

. state simulations, differ from the asymptotically optimal control coeffi-
- cients A* by a factor of order n—l. The first—order error term involves
‘ only the asymptotic covariance structure, and the first—-order bias terms;

the (exact) small-sample covariance structure plays no role, even in the

case of a non-stationary steady-state simulation. The loss, in MSE effi-
ciency, created by using the asymptotically optimal A*, rather than the
small-sample optimal X:, is of order n_3. Thus, the loss in efficiency
is of small order.

Similar results hold for the method of multiple estimates.
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